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Some methods for the numerical solution of the regularized long-wave equation, 
ut + u, + uu, - u,,t = 0, are described. A solitary wave solution of the equation is used 
to examine the practical accuracy and efficiency of each method. 

1. INTRODUCTION 

The Korteweg-de Vries (KDV) equation 

was first put forward as a model describing the lossless propagation of shallow 
water waves [I]. Since then it has been used as a model for (1) ion-acoustic waves 
in plasma; (2) magnetohydrodynamic waves in plasma; (3) the anharmonic lattice; 
(4) longitudinal dispersive waves in elastic rods; (5) pressure waves in liquid-gas 
bubble mixtures; (6) rotating flow down a tube; and (7) thermally excited phonon 
packets in low-temperature nonlinear crystals (a list of references is given in Scott, 
Chu, and McLaughlin [2]). 

Recently, Benjamin, Bona, and Mahony [3] have argued in favor of an alter- 
native equation, the so-called regularized long-wave (RLW) equation 

Ut + 45 + uu, - U,,: = 0. (1.2) 

This equation was first put forward by Peregrine [4] to describe the development 
of an undular bore, and describes wave motion to the same order of approximation 
as the KDV equation. Since the RLW equation has the same formal justification 
as the KDV equation it can equally well model all the applications of the KDV 
equation listed above. Benjamin et al. contend that “the RLW equation is in 
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important respects the preferable model, obviating certain problematical aspects 
of the KDV equation and generally having more expedient mathematical proper- 
ties” [3]. 

One interesting difference between the two equations is that the KDV equation 
is invariant to Galilean transformation: if u(x, t) is a solution of (1.1) then so is 
U(X + At, t) - h for any h [5, 61. No corresponding result for the RLW equation 
is known. Further, an infinite number of conservation laws satisfied by the solutions 
of the KDV equation can be constructed [7], but only two are known for the RLW 
equation [3]. Analytic solutions describing the interaction of N solitary wave 
solutions of the KDV equation are known [2], but again corresponding results for 
the RLW equation are not known. Finally we note that the U, term in (1.1) can be 
eliminated by a simple change in coordinates, but this cannot be done for (1.2) 
without introducing a mixture of u,,, and u,,~ terms. 

Numerical methods for the RLW equation are more complicated than for the 
KDV equation since the cross-derivative term u,,~ leads to implicit rather than 
explicit finite difference methods. However, the added work involved in implicit 
methods is compensated to some extent by their better stability properties. Finite 
difference methods for the KDV equation have been discussed by Vliegenthart [6] 
and Greig [8]. A simple finite difference method for the RLW equation was first 
proposed by Peregrine [4] and also used by Hammack [9]. 

This paper is the first of two in which we examine numerical methods and 
solutions of the RLW equation. In this paper we develop various finite difference 
schemes for solving the RLW equation in the quarter-plane {x > 0, t > 0}, given 
the initial conditions 

4x9 0) = go4 (1.3) 

and the boundary condition 

u(0, t) = h(t). (1.4) 

Existence and uniqueness properties of this problem are extensively discussed in 
Bona and Bryant [lo]. The second paper in this series will describe a numerical 
study of the interaction of two or more solitary wave solutions of the RLW 
equation. 

This paper is set out as follows. In Section 2 first-order two-step methods, 
including Peregrine’s method are described. Second-order two-step methods and 
three-step methods are discussed in Sections 3 and 4, respectively. In Section 5 the 
accuracy and efficiency of each scheme is investigated experimentally using the 
analytic solitary wave solution as a test example. These findings are summarized 
in the concluding Section 6. 
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2. FIRST-ORDER, TWO-LEVEL SCHEMES 

We will use the following notation for our difference methods. The x and t 
coordinates are discretized by a grid spacing h and a time step T. This gives the 
grid points (i/z, mu) E (i, m) with m = 0, 1, 2 ,... and i = 0, 1, 2 ,... wim is used to 
denote any approximation to ui m. 3 u(ih, mT). We may also use the difference 
operators 

822wim = (WE1 - 2wim + wT1)/h2, 

I&Wi” = (WE1 - w5)/2h, (2.1) 

Ll,Wi” = (WY*’ - Wi”)/T. 

Because (1.2) is a relatively new model for long waves, not many difference 
schemes have been derived to solve it. One of the few is a scheme developed by 
Peregrine [4]. Peregrine’s scheme is 

A,( 1 - 6,2) wjnz + $(l + Wi”) H,(w:+l + Wi”) = 0. (2.2) 

Hammack [9] used this method to obtain “theoretical” solutions of (1.2) and 
compared them with experimental results from apparatus designed to produce 
water waves from underwater disturbances. His aim was to test (1.2) as a model for 
long waves in water. 

To find the order of accuracy of the scheme (2.2), w is replaced by u in (2.2), 
where u is a solution of (1.2) which has as many bounded derivatives as we require, 
and the error in the resultant equation is calculated. Thus expanding all the 
terms about (i, m + i) shows that the first term approximates ut l~+(l/~) and 
u,,$ )y+(+) with errors involving r2 and h2 and that the second factor of the second 
term approximates U, I~n+(l/~) with the same error but that the first factor 1 + wim 
approximates 1 + u~+(l/~) with errors involving terms of order T. The local error 
in (2.2) is, in fact, 

-(T/2) U$4, 1y+(1/2) + o(T’) + O(h2). 

This means that (2.2) is only a first-order-accurate method. 
If we assume that the terms ut and U, are larger in magnitude than UU, and u,,~ , 

a modified version of Peregrine’s scheme can be developed which gives higher 
accuracy. If the higher-order terms UU, and u,,~ are dropped, the RLW equation 
becomes the linear wave equation 

which has the exact solution u = constant on any diagonal line parallel to t = x. 
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Hence if h = T, a better approximation to u at the higher time (WY”) is given by 
!;I rather than wim. This leads to the modified version of Peregrine’s scheme 

Lalid only for the square grid h = 7) which is achieved by changing the term 

$(I + w,“) H,(w:+l + Wi”) 

in (2.2) into the term 

$(I + wrl) f&w:+’ + $(l + wi”) Hswim. (2.3) 

The local error of the modified method is 

- (T/2) up, jy+(l/2) - (h/2) uz2 1?+(1/2) + O(G) + O(h2) 

= - (T/2)(24, + 24,) us lp+‘l/2) + O(T2) + O(h2) 

= (T/2)(UU, - Z&) Ux 1~+(1/2) + o(T2) + o(h2). 

Since UU, and u,,~ are assumed smaller than ut, comparison of this error with that 
of Peregrine’s method shows that the modified method has a smaller error in this 
case. 

We analyze the stability of Peregrine’s scheme using the Fourier method and 
Von Neumann’s analysis (see Richtmyer and Morton [l 11). This method is strictly 
only applicable to linear equations for pure initial value or periodic problems. 
Equation (2.2) is linearized by freezing the terms which give nonlinearity, namely, 
1 + wim in the second term is replaced by 1 + U, where U is considered to represent 
locally constant values of U. The amplification factor of a general Fourier com- 
ponent of w is then calculated as 

1 
- 

g,.,(e) (1 f u) fl (T/%) Sin 6 
- 

= (2/h2)(COS 8 
- 

1) 
1 + (1 + U) d- 1 (T/~/Z) sin 0 - (2/h3(cos 8 - 1) 

’ (2.4) 

where 8 = /3/r with /3 the Fourier variable. Hence, since j g2.,(@l = 1 for all 8, (2.2) 
is an unconditionally stable scheme in the linearized sense. 

The modified version of Peregrine’s scheme has exactly the same form as Pere- 
grine’s scheme when linearized and therefore has exactly the same linearized 
stability properties. Equation (2.2) is an implicit scheme and as such we must 
specify left and right boundary conditions in order to make it well posed in practice. 
The left-hand boundary conditions are supplied by (1.4) as 

m wo = h(mr). 

The right-hand boundary conditions are derived from considerations of the 
particular problem in hand and the properties of its solution. In general we have 
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found it expedient to fit u = 0 on some sloping right-hand boundary, and to 
stop the calculation if the nonzero part of the solution (to some numerical tolerance 
e) “overtakes” this moving boundary. Thus the range of x increases with each time 
step. 

With these boundary conditions given, (2.2) then reduces to the solution of a 
tridiagonal system at each time level. Because of the nonlinear terms involving 
values at the advanced time level, the tridiagonal matrix changes at each time level. 
This is easily seen from its ith row at the mth time level, namely, 

(1 + WY T;2 , (1 + WY - 
4h 4h 

T;2 . (2.5) 

Hence a full tridiagonal system must be solved at each time level. 
The same considerations apply to the modified Peregrine scheme. 
We consider some other difference schemes which have certain advantages over 

(2.2). First of all we write (1.2) in the form 

(u - a + (1 + u> 4 = 0. (2.6) 

A straightforward difference replacement of (2.6) gives 

d,(l - 62) Wim + (1 + Wi”) HzWi*” = 0. (2.7) 

Although 822wim. and &wjna are second-order-accurate difference replacements for 
u,, IF and U, IF , dtwim is only a first-order-accurate replacement for ut IT and so 
(2.7) is only a first-order difference scheme. Equation (2.7) has much the same 
form as (2.2). The difference is that the U, replacement involves only values at the 
mth level. 

In practice, (2.7) will also require the solution of a tridiagonal system at each 
time level. However, examination of the ith row at the mth time level shows that 
the nonzero elements of the tridiagonal matrix are 

1 -- 
h2r ’ w3) 

By multiplying the whole system by - h2T the even simpler set of elements 1, 
-(2 + KJ), 1 is obtained. Since the tridiagonal matrix is constant, only the right- 
hand side of the tridiagonal system changes at each time level and the work 
involved in solving the system is much less. 

The tridiagonal system 

b, + ClXZ = 4, 

&Xi-l + biXi + CiXi+l = di (i = 2,..., N - I), 

aNxN-l+ bNxN = dN 

(2.9) 

5w19/1-4 
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can be solved efficiently by the algorithm (Todd [12]) 

f’l = b, > g, = 4/P, 3 41 = -cl/PI ; 

pk = bk + akqk-l, 

qk = --klpk 3 k = 2,..., N; 
gk = (dk - akgk-l)/Pk , 

XN = gN , 

xk-1 = qk-1Xk + gk-1, k = N,..., 2. 

This is merely the LU factorization method with the diagonal coefficients of U 
chosen to be unity. (This method is equivalent to Gaussian elimination, but 
according to Mitchell [13], avoids the error growth associated with the back 
substitution in the elimination method). Since the coefficients Pk and qk do not 
depend on the r.h.s. vector di , they can be evaluated and stored at the start of the 
calculation, leaving only gk and xk to be calculated at each time step. With a, and 
ck unity this requires only two multiplications/divisions per grid point as compared 
with the five required for a nonconstant tridiagonal matrix. For comparison, 
setting up the r.h.s. for (2.8) requires three multiplications per grid point. 

A further bonus of a constant matrix scheme is that bounds can be placed on the 
coefficients PI, , qk , and gk and it can easily be shown that the algorithm is stable 
and any rounding errors in the iteration are damped. 

The amplification factor of (2.7) is 

g,.,(R 794 = 1 - 
d-1(1 + U)(T/~) sin 9 

1 + (2/h2)(1 - cos e) . 
(2.10) 

Note that g,., depends on 0,7, h and that the denominator in (2.10) is 2 1 for all 8. 
From (2.10), 

, g 
2.7 

,2 = 1 + (1 + u)2 whw - ~02 e) 

(1 + (2/h3(1 - ~0~ ey 

and so, after some calculation, 

;;T I g,.,(w = 1 + (1 + ~12 v/(4 + h2)1 G 1 + [(I + ~)2/41 9. (2.11) 

Thus by Von Neumann’s condition (see Richtmyer and Morton [l 1 p. 701) the 
scheme (2.7) is unconditionally stable in the linearized sense. Methods which have 
their linearized amplification factor on the stability borderline, namely, have 
amplitudes 1 + O(T), tend to produce instabilities when applied to nonlinear 
equations. This trend can sometimes be offset by the addition of a stabilizing term. 
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We adopt this approach here and analyze the effect on (2.7). The stabilizing term 
chosen is the “smoothing” term adopted by Lax to stabilize Richardson’s method 
for conservation laws. We add the term 

U(h2/T) sr2wjm (2.12) 

to the right-hand side of (2.7). Thus (2.7) gives 

h2 d,(l - S,Z) wjm + (1 + Wi”) H&vi” - u - sr%Vim = 0. 7 (2.13) 

This term does not alter the accuracy of the method since (2.12) is an approxima- 
tion for 

o(h2/+2ujm/t3x2). (2.14) 

Also, the method still has a constant tridiagonal matrix in the tridiagonal system 
to be solved at each time level. The amplification factor of (2.13) is 

1 - (1 + v- + cos 0 - = W (T/h) sin 0 - [~(COS 8 - 1)/h”] a(2 2) 

1 - [~(COS 19 - 1)/h”] (2.-l 5) 

A lengthy calculation gives 

provided that 

Ig2.12 I d 1, (2.16) 

0 d u d 4[1 + (4/h2)1, 
(1 + U)(T/h) < (20)l/~. I 

(2.17) 

If the conditions (2.17) are satisfied, the amplification factor (2.15) is less than or 
equal to unity. This means more than simply linearized stability. One would thus 
expect the method to produce less instability in the nonlinear case the greater the 
amount of the smoothing term, given by increasing u. The optimum choice of u is 
discussed in Section 5. 

3. A SECOND-ORDER, TWO-LEVEL SCHEME 

Peregrine’s method (2.2) was only first-order accurate because the second term, 



50 EILBECK AND MCGUIRE 

was only a hrst-order-accurate difference approximation for 

(1 + U) U, ly+(ljz). (3.2) 

To obtain second-order accuracy we adapt this term to be second-order accurate 
for (3.2). We do this using the technique for deriving second-order, Crank- 
Nicolson, methods for the heat equation. Thus instead of (3.1) we take 

+(l + ~7”) &I$+’ + &(l + wim) Hzwim. 

This gives the difference scheme 

A,(1 - 6,“) wim + ;(l + WY”) H,w:+’ + $(l + wi”) Ha+,* = 0. (3.4) 

We call this method the Crank-Nicolson scheme. The scheme is second-order 
accurate. Its amplification factor (for the linearized scheme) is 

g 
3.4 

(e) = 1 - (1 + U) fl(7/2h) sin 8 - [(2 cos 6 - 2)/h2] 
1 + (1 + U) G-I (+z) sin 0 - [(2 cos 8 - 2)/h2] ’ (3.5) 

which has modulus 1 for all 8. Hence (3.4) is unconditionally stable. 
However, the cost of second-order accuracy and unconditional stability is the 

nonlinear implicitness of (3.4). In practice, (3.4) is only defined by i = l,..., N for 
some finite N with boundary values w,~ and wNm specified for all m. Thus at each 
time level a system of coupled nonlinear equations in unknowns {w~“}C, must be 
solved. 

An iterative process is used to obtain the solution from the nonlinear equations 
(3.4). We define iterates {~j)~~“}~=~ by 

(1 - ~3((j+l)yy+l - wi”)lT + i(1 + C+qy+l) H, (j+l)wT+l 

+ J(1 + wi”) Hzwim = 0, (j = 0, 1, 2 ,... ). (3.6) 

If T = h, the initial values (O)wF+l are chosen to be simply wE1. Thus the first step 
in the iteration is seen to be iimply the modified version of Peregrine’s method 
described in Section 2. With the iteration (3.6) it is necessary to solve a variable 
tridiagonal system at each iteration. 

An iterative process which requires the solution of a tridiagonal system with a 
constant matrix for each iterate is given by replacing the second term by 

$.(I + W,rl”+l H (j),?n+l. *), I (3.7) 

However, the convergence of this process may be slower. 
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4. A SECOND-ORDER, THREE-LEVEL SCHEME 

Second-order accuracy can also be achieved and the nonlinear implicitness of 
(3.4) removed by replacing the approximations for (u$ - u,3? by difference 
approximations over three time levels. Thus consider the scheme 

I&( 1 - i&2) wy + (1 + Wi”) &wim = 0. (4.1) 

The central difference operator for the time derivatives ensure second-order 
accuracy. 

Written in full, (4.1) is 

WY+1 - WY-’ + (1 + wim)( WL; Cl ) 
27 

m+1 
wi+1 - 2w:+l + WL-:’ 

m-1 
wi+1 - 2wy-1 + w;“-;’ 

- 

( 

- 

2rh2 2rh2 ) = . o 

(4.2) 

Since (4.2) is a three-level scheme it can be expressed as a system of two two-level 
schemes (see Richtmyer and Morton [l 11). The amplification matrix of this system 
can then be shown to have eigenvalues which are the roots of the quadratic 

p2[1 - (2/h2)(cos 0 - I)] + 2/q (p/2)(sin 8 + U sin 0> p 

- [I - (2/h2)(cos 0 - l)] = 0, 

where 6 = flh with /I the Fourier variable, p = 47/h. Putting 

sin 4 = )p(l + U) sin 0/[1 - (2/h2)(cos 0 - l)] 

in (4.3) gives 
p2 + 2 VT sin [p - 1 = 0. 

(4.3) 

(4.4) 

(4.5) 

The denominator in (4.4) is always nonzero, in fact, greater than or equal to unity. 
In (4.5) the product of the roots is - 1. They are, in fact, 

-&TdZC. (4.6) 

Thus for stability the roots must both have modulus unity. For this, 6 must be real 
and so, from (4.4), sin 5 must have modulus less than or equal to unity. Hence 
stability requires that 

)p(l + U) sin 8 
i - (~~)(cos e - 1) I ,< 1, for all 8. (4.7) 
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Now, on putting x = 1 - cos 8, 

(p2/16)(1 + U)z sin2 0 
;:: (1 - (2/IP)(cos 0 - 1)}2 

Hence (4.7) is satisfied when 

(1 + w [T2/(4 + h2)1 < 1. (4.8) 

Now h, the grid spacing, is a small quantity and hence the left-hand side of (4.8) is 
approximately (1 + lJ)2 (r2/4). Also, r is the time step, usually a small quantity, 
and U represents signal speed and will usually be around unity. Hence (4.8) will 
always be satisfied for any problem of practical significance. 

Thus, because (4.8) is such a weak condition, the scheme is virtually 
unconditionally stable, at least for any practical problem. 

The disadvantage of (4.1) is the fact that it is a three-level scheme and as such 
require an extra time level of starting values. These can be provided to sufficient 
accuracy by the use of a two-level scheme with a smaller time step. The advantage 
of (4.1) is its second-order accuracy and the fact that the tridiagonal matrix is 
constant, which enables the time-saving methods discussed in Section 2 to be used. 

5. NUMERICAL RESULTS 

To examine and compare the accuracy of the schemes discussed in the preceding 
sections, some numerical experiments were conducted. The equations used and the 
results obtained from these experiments are reported and discussed in this section. 
The solitary wave, or soliton, solution is 

3c sech2 (kx - wt + a), (5.1) 

where 

k = ; (&)l”, w = ; (c(1 + c))‘/2, 

and c and 8 are arbitrary constants, is an exact solution of the regularized long- 
wave equation (see Benjamin [3, 141). This exact analytic solution was used as a 
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FIG. 1. Graphs of the exact and computed solutions as described in the text. Curve 1 is the 
exact soliton solution, 2 the computed solution using the modified Peregrine’s scheme, and 3 the 
result from Peregrine’s scheme. The numerical results from the other schemes lie too close to the 
theoretical curve to be shown. 

A 

FIG. 2. Graph of the log,, (RMS error), for the solution described in the text, against D for 
the scheme (2.13). For comparison the log,, (RMS error) for the other schemes have been inserted 
along the D = 1 line. @ = Peregrine’s scheme; @ = Peregrine’s modified scheme; IL = Crank- 
Nicolson scheme (3.4); A = three-level scheme (4.2). Another choice of solution would give a 
minimum for a different value of (I. 
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test solution for the numerical schemes. Exact initial conditions on time level 
t = -T were fed into the two-level schemes and on time level t = -27 for the 
three-level scheme. Thus computed results from each of the schemes began at 
t = 0. Exact boundary conditions were also fed into the schemes at x = 0 and at 
a value of x large enough that the magnitude of the soliton was zero (within some 
specified accuracy) at this value. For the purposes of comparison values of the 
constants were chosen to be c = 0.3, 7 = h = 0.2, and the program was run for 
250 time steps. 

The results obtained from the experiments are given in Figs. 1 and 2. Figure 1 
shows the exact solitary wave solution together with the results obtained from 
integrating the solution for 250 time steps using Peregrine’s scheme and the modi- 
fied Peregrine’s scheme. Results from the other schemes lie too close to the theore- 
tical value to show up on this graph. Figure 2 shows the root-mean-square error, 
(defined as the square root of the sum of the squares of the errors divided by the 
number of grid points at the final time level), for each scheme after 250 time steps. 

From Fig. 1 the excellent results obtained from the second-order schemes of 
Sections 3 and 4 and from the scheme (2.13) with a well-chosen value of u are 
obvious. Peregrine’s scheme is seen to follow the soliton not nearly as accurately. 
A considerable improvement is obtained with the modified version of Peregrine’s 
scheme. 

Figure 2 shows a great improvement in the size of the root-mean-square error 
for the second-order-accurate schemes over those of only first-order accuracy. The 
best value of u, namely, near u = 1.0, obtained with this soliton solution for the 
scheme (2.13) only applies for this particular solution and will be different for 
other solutions, i.e., a soliton with a different amplitude. It is interesting to note 
that the local error terms for the scheme (2.13) can be put in the form, at the point 
(ih, 4, 

(@/2)(u,, - u,,Jy - uh2u,, IT + O(T~ + h31. (5.2) 

Thus the principal part of the error is linear in U. There is also an obvious 
improvement of the root-mean-square error of Peregrine’s method by modifying 
the scheme using (2.3). 

Finally it is again emphasized that, in the analysis of the schemes, only the 
linearized versions were tested for stability. This is somewhat unsatisfactory when 
the schemes are to be used on a nonlinear equation. Besides the linear analysis an 
indication of their value in the nonlinear case can be gained from studying their 
ability to mirror properties of the differential equation such as conservation law 
form. Equation (1.2) can be written in the form 

(u - &c)t + (u + 4U31E = 0. (5.3) 
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Integration over x gives 

55 

(5.4) 

for solitons, since u -+ 0 as x -+ * co. 
Although (5.4) is not really a conservation law, it is a relation satisfied by the non- 

linear equation and it would thus be desirable that the difference equations mirror 
this form. For Peregrine’s scheme (2.2), summing over i gives 

A, y (1 - i&2) )qim = - i-co 
j=--m i& (1 + w”) K!(G+l+ Wi”> 

i=m 
= -4 1 Wj”(Wyly--1 - w3/2h # 0. (5.5) 

is=--m 

Peregrine’s modified method also does not mirror (5.4). 
However, for schemes (2.7) and scheme (2.7) with (2.12) added, summing over i 

gives 
i=m 

A, c (1 - C&2) W#m = 0. 
k--co 

Scheme (3.4) also satisfies (5.6). Scheme (4.1) satisfies the relation 

Ht ‘F (1 - az2) wirn = 0. (5.7) 
t---m 

Thus schemes (2.7), (2.7) with (2.12) added, (3.4), and (4.1) all mirror the property 
(5.4) of the differential equation for soliton solutions. 

Equation (1.2) with soliton solutions also satisfies other relations which are true 
conservation laws (see [3]). These relations are more complicated than (5.4) and 
the calculations required to check for them in the difference equations would be 
extremely difficult. However, from the above analysis concerning the relation (5.4), 
it is seen that schemes (2.7), (2.7) with (2.12) added, (3.4), and (4.1) are better than 
Peregrine’s scheme, or its modified version, in the sense of mirroring (5.4). This is 
borne out in the results of Fig. 1. 

Again, in this nonlinear analysis, the three-level scheme comes out as one of the 
best methods for the RLW equation. 
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6. CONCLUDING REMARKS 

On the basis of the results obtained in Section 5 and the remarks in earlier 
sections we conclude the paper with a comparison of the various methods discussed. 

The only previously developed scheme, Peregrine’s scheme, is much less accurate, 
in our experiments, than its modified version as given in Section 2. The modified 
version has the same linearized stability properties and also involves the same 
amount of work as Peregrine’s scheme. Thus the modified Peregrine’s scheme is an 
improvement over Peregrine’s scheme. 

The scheme (2.13) can be more accurate than the modified Peregrine method 
provided the correct value of e is chosen. Also, scheme (2.13) has a slightly simpler 
tridiagonal matrix to solve at each time level. However, difficulties with finding a 
best value of u do not give this scheme any advantage, if any, over the modified 
Peregrine scheme for the general initial value problem. 

When one turns to the second-order schemes the improved accuracy over first- 
order schemes is obvious in the result of Section 5. The main disadvantage of the 
two-level second-order scheme is the need for iteration although, in our experi- 
ments, the iteration was repeated only once. However, even this requires the 
solution of two nonconstant tridiagonal systems at each time level. 

The three level-scheme, on the other hand, requires only the solution of a simple 
tridiagonal system (with a constant coefficient matrix) at each time level. It is thus 
as fast as any other scheme examined. It is more accurate than any of the other 
schemes as given by the results of Fig. 2. Its only drawback appears to be in its 
three-level nature. This necessitates the use of some procedure to obtain values 
at the first time level. However, this is only one time level and these values could 
be obtained by any of the two-level schemes mentioned above. Once these values 
have been obtained, one then has a fast, stable, and accurate method for the RLW 
equation. 
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